
1.
2.
3.
4.

vhAssets

Overview
First Time Installation
Upgrading

Users
DebugConsole
FreeMouseLook
Loading Screen
VHWayPointNavigator
VHTimeDemo
SmartBodyManager
UnitySmartBodyCharacter
VHMsgManager

Developers
Loading vhAssets Scene
Creating your own Project using the vhAssets Unity Package
Creating your own Virtual Human (Smartbody)

Smartbody initialization
Character Configuration
Changing the Character Voice
Online Motion Retargeting

Creating your own Virtual Human (Mecanim)
Setup
Testing
Mecanim Help

DebugConsole
VHMsgManager
Build Process
BuildSettings.xml Format
Config File Parsing

Known Issues
FAQ

Overview
vhAssets is a collection of redistributable package files:Unity

vhAssetsTestScenePackage - sample scene that shows how to setup a SmartBody driven character in Unity. Requires one of the platform
packages below.
vhAssetsPackage - Windows platform specific package
vhAssetsPackageOSX - Mac OS X platform specific package
vhAssetsPackageIOS - Apple iOS platform specific package
vhAssetsPackageAndroid - Android platform specific package

The Toolkit uses Unity as it's primary rendering engine. It can run in Unity Free or Unity Pro. For Unity Free, we interface with SmartBody using 'bonebus
mode'. For Unity Pro, we access SmartBody directly using a .dll.

Functionality that the vhAssetsPackage provides:

SmartBody interface
VHMsg interface
VHCL Audio interface
Asset Post-Processors that ease pipeline integration
Resolution independent UI classes
Interactive Debug Panel
Customizable Free Mouse Look
.ini file configuration
Loading Screen
Performance time demo tests
File Parsing
Application setup point
Customizable build process
FPS and Memory Debug Info

First Time Installation

Bring the .unityPackage file inside of your Unity project Assets folder
Double click it
Click Import
Add all the imported files into svn

Upgrading

Upgrading .unitypackage files is a little more difficult. quote from the Unity docs explains it:This

http://www.unity3d.com/
https://confluence.ict.usc.edu/display/VHTK/SmartBody
https://confluence.ict.usc.edu/display/VHTK/VHMsg
https://confluence.ict.usc.edu/display/VHTK/VHCL
http://unity3d.com/support/documentation/Manual/HOWTO-InstallStandardAssets.html

1.
2.
3.

"For the cleanest possible upgrade, it should be considered to remove the old package contents first, as some scripts, effects or prefabs might have
become deprecated or unneeded and Unity packages don't have a way of deleting (unneeded) files (but make sure to have a security copy of the old
version available)."

The easiest way I've found is to use the approach the SVN docs recommend for .vendor branch upgrades

remove all files from the folders you are upgrading (leaving the .svn folders)
install the .unitypackage as normal
bring up the SVN Commit dialog. Then SVN Add all 'non-versioned' files, and SVN Delete all 'missing' files.

Users

Through the Unity Editor, many variables of vhAssets script components can be customized

DebugConsole

Captures all SmartBody and Unity log ouput and display it to user. Also can be used to send commands. Type '?' for a list of available commands.

Variable Name Purpose Value Range

Percentage Of Screen The amount of vertical space that the debug console GUI will span float 0 - 1

FreeMouseLook

Variable Name Purpose Value Range

Axes Specifies which axes the camera can rotate around MouseX, MouseY, MouseXAndY

Sensitivity X/Y Angular velocity for camera rotation float

Movement Speed Linear velocity for camera movement float

Secondary Movement Linear velocity for camera movement when holding the left shift key float

Maximum X//Y Max angle the camera can rotate on an axis before being clamped -360 to +360

Minimum X/Y Min angle the camera can rotate on an axis before being clamped -360 to +360

Camera Rotation On Enables/Disables camera rotation from mouse movement: True or False True/False

Move Keys Allows specification for which keys are used to make the camera move

up, down, left, right, forward, backward, and toggle rotation on/off

KeyCode

Loading Screen

Provides functionality for full screen image

VHWayPointNavigator

Variable Name Purpose Value Range

Speed Linear movement rate at which you move between waypoints float

Turn Towards Target Turn to face your next waypoint target. True/False

Ignore Height Only move to next waypoint along the x/z axes True/False

Immediately Start Pathing Start Pathing: As soon as the scene starts, start moving True/False

Loop Type Action to take upon reaching the last way point of the path Loop, Ping Pong, Stop

Pather The gameobject that will do the moving GameObject

WayPoints The list of transforms that will be used as waypoints for the pather to move along GameObject

VHTimeDemo

Works with VHWayPointNavigator and FpsCounter to track performance along a specified path in the scene and then uploads fps/performance data to a
database

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.advanced.vendorbr.general

1.
2.

3.

Variable Name Purpose Value
Range

Time Demo Name Identifying name of this time demo. Used for starting a specific time demo through the console or command
line

string

Performance Log
Name

The filename for the output log from unity's performance tracking string

Project Name Specifies the project this demo is used for string

Time Demo Length The amount of time it will take for the time demo to complete once started positive float

Fps Sampling Rate How often the fps will be sampled during the time demo positive float

SmartBodyManager

Interfaces with SmartBody.dll to provide SmartBody character animation to unity

Variable Name Purpose Value
Range

Path To SBM Files The directory in which SmartBody should look for initialization files. Starting directory is the current unity
project folder

string

Character Load Path Project subdirectory in which character prefabs should be instantiated from string

Position Scale Units of measurement between SmartBody and unity can sometimes be different based on how the art was
exported.

If there is a difference, it can be mitigated with this variable

positive float

Display Log Messages Toggle for allowing SmartBody LOGs to be output to unity. True/False

All Facebone
Characters

Toggle for making all unity SmartBody driven characters facebone drive or not True/False

Cam Settings Used for the SBMonitor to duplicate the renderer viewport and camera positive float

Initial VHMsgs to Send VHMsgs that will get sent as soon as SmartBody is initialized string

UnitySmartBodyCharacter

Works with SmartBodyManager to have a SmartBody driven character inside of unity

Variable Name Purpose Value Range

Bone Parent Name Child gameobject name path that will lead to the skeleton root string

Is Face Bone Driven: Toggle that informs SmartBody whether or not this character is face bone driven True/False

VHMsgManager

Interfaces with VHMsg that allows communication via strings between processes

Variable Name Purpose Value
Range

Use Specified Host and
Port

If checked, the Host and Port specified will be used on connection, otherwise localhost and 61611 will be
used

True/False

Host Host to connect to string

Port Port to connect to positive int

Developers

Loading vhAssets Scene

Open Unity
File->Open Project (this may already be done for you if this is the first time you've launched Unity)

3.
4.
5.
6.
7.

1.
2.
3.
4.

a.
b.
c.
d.

5.

6.
7.
8.
9.

On the Open Project tab, click the Open Other button.
Navigate to the vhAssets Unity Project here: <VHToolkit>\lib\vhunity\vhAssets
Click Select Folder
In the Project column, double click on vhAssetsTestScene.
Click Play

Creating your own Project using the vhAssets Unity Package

Open Unity
File->New Project
You need 2 Unity Packages to start with. You'll find all packages here: <VHToolkit>\bin\vhAssets. Copy them to <your project>\Assets.
First, is the vhAssets package. This contains common scripts and libraries used in various Virtual Humans applications. There is a different .
unitypackage file for each platform.

vhAssetsPackage.unityPackage (Windows)
vhAssetsPackageOSX.unityPackage
vhAssetsPackageIOS.unityPackage
vhAssetsPackageAndroid.unityPackage

Second, is the vhAssets Test Scene. This contains assets and scripts that will initialize a very basic test scene environment. This file
is: vhAssetsTestScenePackage.unityPackage
Copy the 2 Unity Packages to this new project.
In Unity, in the 'Project' column, double click on the 2 Unity Packages.
Open Scenes->vhAssetsTestScene
Click Play. The virtual human should be animating in an idle pose. Hit 'C' to show a debug menu. You should be able to control him via the
buttons on the debug menu.

Creating your own Virtual Human (Smartbody)

Creating your own Virtual Human has different meanings to different groups. Some people want to use the existing characters that we supply, but only
change certain features like giving them a different voice, or a different colored shirt. Others groups want to use a different character, but the character
was created using a standard character package that we already support (Mixamo, etc). Others want to use a completely different character with a unique
skeleton, etc. These instructions will attempt to explain the different features and how to customize based on your needs.

The easiest way to use your own Virtual Human is to create a Unity Project using the included .unitypackages as a starting point. From here, you can add
/change features on the default character, or bring in your own and customize using the existing character for reference.

Smartbody initialization

SmartbodyInit class (Attached to SmartbodyManager gameobject)

asset paths
joint mapping
mapped skeletons/motions

SmartbodyCharacterInit class (Attached to each character gameobject)

skeleton name (.sk)
voice type (prerecorded audio or tts)
voice "code" (path to audio files or tts voice name)
backup voice type and backup "code" (if prerecorded audio file is not found, you can use TTS as a backup)
starting posture
locomotion information

SmartbodyFaceDefinition class (Attached to each character gameobject)

defines visemes and facial expressions for the character.
visemes and facial expression are single pose animations (.skm) for doing blended lip-sync and expressions.
neutral pose, action units and visemes

SoundNode gameobject

Empty gameobject named 'SoundNode' attached as a child of the character's gameobject
Attach a Sound Source script to the SoundNode gameobject
Manually position the SoundNode gameobject where you want the character's speech to originate (eg, his mouth)

Character Configuration

Every character should have a script associated with him which specifies the attributes of the character. This class is derived from the
SmartbodyCharacterInit class.It specifies the following parameters

unityBoneParent
assetPath
skeletonName
voiceType
voiceCode
voiceTypeBackup
voiceCodeBackup
useVisemeCurves
startingPosture

The parameters allow us to configure the character correctly with respect to smartbody. Please take a look at the 'InitBrad.cs' file for an example of how to
configure the character

Changing the Character Voice

The character can use audio files on a per utterance basis, or it can use a TTS generated voice. If using audio files, the voiceType parameter in the above
mentioned configuration will be set to 'audiofile' and the voiceCode parameter will point to the folder containing the sound files for the character.

e.g. in the case of the character Brad, His voice files are under the folder "Sounds". This folder contains the audio files and the corresponding .bml and .
xml files which are the lipsynch schedule and the non-verbal behavior respectively.

If you want the character to use the TTS generated voice, you will set the voiceTypeBackup parameter to "remote" and set the voiceCodeBackup
parameter to the name of the voice you want to use. The name of this voice can be obtained by looking at the TTSRelay application which prints out the
available voices on launching.

When Smartbody cannot find audio files, it defaults to the TTS voice and uses the voice you specified as the characters voice.

Online Motion Retargeting

Smartbody has the capability of online retargeting motions built for one character to another. This can be done in two steps.

In your Init script, when setting the assetPaths, the first parameter specifies the skeleton the motions belong to. ie in Rachel's InitRachel.cs,
there's a line:
assetPaths.Add(new KeyValuePair<string, string>("ChrRachel.sk", "Art/Characters/SB/ChrRachel"));
This says to load all the motions in the ChrRachel folder and assign them to the ChrRachel.sk skeleton.
If you want to retarget Brad's motions to Rachel, you need to add another line:
assetPaths.Add(new KeyValuePair<string, string>("ChrBrad.sk", "Art/Characters/SB/ChrBrad"));
This says the motions in the ChrBrad folder are for the ChrBrad.sk skeleton, and they should be retargeted to ChrRachel.sk.

On the character's gameobject, for each source skeleton that you use for retargeting, you need to set the skeleton mapping on that skeleton. For
example, if you look at Rachel's gameobject, you'll see two skeleton mapping components. Each one is a Zebra2 mapping, but one is for
ChrRachel.sk and one is for ChrBrad.sk since Rachel uses both ChrRachel and ChrBrad motions.

After doing these two steps, you should be able to use one character's motions on another. In the above example, you should be able to play a motion like
 Rachel, eg:ChrBrad@Idle01_ArmStretch01.skm on

SmartbodyManager.SBPlayAnim("Rachel", " ");ChrBrad@Idle01_ArmStretch01.skm

Creating your own Virtual Human (Mecanim)

A new scene entitled "mecanim" has been added to the vhAssets package which displays 2 of the Brad character, one driven by the Smartbody animation
system and the other by Unity's Mecanim animation system. This scene is currently in development but can be used as a guide for how to setup a
mecanim character. This scene needs to be loaded through the MainMenu scene to work properly. Alternatively, you can manually activate
the SmartbodyManager, VHMsgManager, and DebugConsole objects.

mailto:motionlikeChrBrad@Idle01_ArmStretch01.skmon
mailto:motionlikeChrBrad@Idle01_ArmStretch01.skmon
mailto:ChrBrad@Idle01_ArmStretch01.skm

Setup

Select a gameobject and add the MecanimCharacter component to it. By adding this one component, other components required to make the character
nod, blink, gaze, etc will automatically be added. Make sure there is a gameobject with the MecanimManager component in the scene as well.

For an example of how to setup a mecanim driven character, click on the gameobject ChrBradPrefab_Mecanim in the mecanim scene. Also add a child
game object called "SoundNode" and attach an audio source to it. Again, see ChrBradPrefab_Mecanim as a reference.

Testing

Use the UI menu on the left side of the screen to test animations, nods, gazes, saccades, and lip sync.

Mecanim Help

For information on Mecanim, please visit Unity's documentation http://docs.unity3d.com/Manual/AnimationOverview.html

DebugConsole

Add a new command callback for an arbitrary command

m_Console.AddCommandCallback("some_command", new DebugConsole.ConsoleCallback(HandleConsoleMessage));

void HandleConsoleMessage(string commandEntered, DebugConsole console)
{
 if (commandEntered.IndexOf("some_command") != -1)
 // Do Something
}

To use the console, at run-time hit the ~ key. Type '?' and hit enter to see a list of commands. If you used the code above in your script, you should see
"some_command" in the list. Note, you can pass additional arguments with these commands.

Send arguments with a command while typing in the console

vhmsg someMessage

VHMsgManager

Subscribe to a certain type of message

vhmsg.SubscribeMessage("someMessage");

Subscribe to all vhmsgs

vhmsg.SubscribeMessage("*");

http://docs.unity3d.com/Manual/AnimationOverview.html

1.
2.

3.

Send a vhmsg

vhmsg.SendVHMsg("someMessage someParam1");

Handle a message

vhmsg.AddMessageEventHandler(new VHMsgBase.MessageEventHandler(VHMsg_MessageEvent));

void VHMsg_MessageEvent(object sender, VHMsgBase.Message message)
{
 string [] splitargs = message.s.Split(" ".ToCharArray());
 if (splitargs[0] == "someMessage")
 // Do Something
}

Build Process

You can customize the build process by creating and modifying a BuildSettings.xml file.

Inside the assets folder in your unity project, create a file called BuildSettings.xml
In the same folder as the Assets folder within your Unity project create a .bat file with the following lines

@setlocal
set PROJECTPATH=%CD%
pushd ..\Unity
call runEditorBatch.bat -projectPath %PROJECTPATH% -batchmode -nographics -quit -executeMethod
UnityStartup.PerformWindowsBuild
popd
@endlocal

Use the following template for custom modification

<?xml version="1.0" encoding="utf-8"?>
<BuildSettings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001
/XMLSchema" xmlns="http://www.cpandl.com">
 <ExternalAssetsPaths>
 <string>Assets/SomeDirectory</string>
 <string>Assets/SomeOtherDirectory</string>
 </ExternalAssetsPaths>
 <BuildOutputPath>Builds/YourProject/YourProject.exe</BuildOutputPath>
 <PostBuildScript>somePostBuildScript.bat</PostBuildScript>
 <ConfigFiles>
 <string>Assets/config.ini</string>
 </ConfigFiles>
</BuildSettings>

BuildSettings.xml Format

Field Desrcription

ExternalAssetsPaths Array of folder names that will be copied to the BuildOutputPath. (OPTIONAL)

BuildOutputPath Path specifying the name and location of the .exe for your build (REQUIRED)

PostBuildScript A .bat or .exe that will be run after the build process is completed. (OPTIONAL)

ConfigFiles Array of file names taht will be copied to the BuildOutputPath. (OPTIONAL)

Config File Parsing

You can create a config .ini file in your project and read it using the IniParser class

m_ConfigFile = new IniParser(configFileName);
m_ConfigFile.GetSetting("SomeSetting") // returns a string with the value of that setting, if it exists

Known Issues

FAQ

FAQ

https://confluence.ict.usc.edu/display/VHTK/FAQ

	vhAssets

